

The FMRIB Variational Bayesian Inference
Tutorial II:

Stochastic Variational Bayes

Michael A. Chappell1,3 & Mark W. Woolrich2,3

michael.chappell@eng.ox.ac.uk

1Institute of Biomedical Engineering, Department of Engineering Science, University of
Oxford.
2Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging,
Department of Psychiatry, University of Oxford.
3Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of
Neurosciences, University of Oxford.

Introduction
Bayesian methods have proved powerful in many applications, including MRI, for the
inference of model parameters from data, e.g. the use of physiological models to interpret
functional MRI time-series data. These methods are based on Bayes’ theorem, which itself is
deceptively simple. However, in practice the computations required are intractable even for
simple cases. Hence methods for Bayesian inference have historically either been
significantly approximate, e.g., the Laplace approximation, or achieve samples from the
exact solution at significant computational expense, e.g., Markov Chain Monte Carlo
methods. Since around the year 2000 so-called Variational approaches to Bayesian
inference have been increasingly deployed, in many cases based on the method proposed
by {Attias:2000uu}. In its most general form Variational Bayes (VB) involves approximating
the true posterior probability distribution via another more ‘manageable’ distribution, the
aim being to achieve as good an approximation as possible. In the original FMRIB Variational
Bayes tutorial {Chappell:Ek0SFHKu} we documented an approach to VB based on
{Attias:2000uu} that took a ‘mean field’ approach to forming the approximate posterior,
required the conjugacy of prior and likelihood, and exploited the Calculus of Variations, to
derive an iterative series of update equations, akin to Expectation Maximisation, for
Bayesian inference. In this tutorial we revisit VB, but now take a stochastic approach to the
problem that potentially circumvents some of the limitations imposed by the earlier
methodology. This new approach bears a lot of similarity to, and has benefited from,
computational methods applied to machine learning algorithms, particularly
{Kingma:2013tz}. Although, what we document here is still recognisably Bayesian inference
in the classic sense, and not an attempt to use machine learning as a black-box to solve the
inference problem.

Bayesian Inference
The basic Bayesian inference problem is one where we have a series of measurements, y,
and we wish to use them to determine the parameters, w, of our chosen model 𝑀. The
method is based on Bayes’ theorem:

𝑝(𝑤|𝑦,𝑀) =
𝑝(𝑦, 𝑤|𝑀)
𝑝(𝑦|𝑀) =

𝑝(𝑦|𝑤,𝑀)𝑝(𝑤|𝑀)
𝑝(𝑦|𝑀)

(1.)

Which gives the posterior probability of the parameters given the data and the model,
𝑝(𝑤|𝑦,𝑀), in terms of: the likelihood of the data given the model with parameters w,
𝑝(𝑦|𝑤,𝑀), the prior probability of the parameters for this model, 𝑝(𝑤|𝑀), and the
evidence for the measurements given the chosen model,	𝑝(𝑦|𝑀). If we are not too
concerned with the correct normalisation of the posterior probability distribution, we can
neglect the evidence term to give:
 𝑝(𝑤|𝑦) ∝ 𝑝(𝑦|𝑤)𝑝(𝑤) (2.)

Where the dependence on the model, M, is implicitly assumed.

From the definition of Bayes theory in equation (2.) we can start to describe a practical
method for Bayesian inference: write down the likelihood for the data in question based on
the model, M, that should be a full description of the data generating process including
noise; write down a prior distribution capturing a prior knowledge about the model
parameters; multiply the two and hence form the posterior distribution (up-to-scale). In
practice, what we will want from this at least is a best estimate of the parameter(s), w, from
the posterior distribution, if not also some measure of uncertainty. A suitable statistical

approach would be to take moments of the distribution, e.g., the mean and the variance. To
do that requires us perform an integral on our posterior distribution, and this is generally
where we have a problem: the posterior distribution is, in most cases, intractable.

Variational Inference
If our posterior distribution happened to be from one of the small group of ‘known’
distributions, generally ones we can calculate moments of, we would be okay. Variational
Bayes, in its most general sense, involves taking a known distribution as an approximate
posterior, 𝑞(𝜃), and trying to find the version of it that is as close as possible to the true
posterior. To measure ‘closeness’ we use the Kullback-Liebler (KL) divergence (or distance)
between the two distributions. In practice, this is something we cannot calculate because it
requires integration of the posterior, but minimising the KL divergence between the
approximate posterior and the true posterior is	equivalent	to	maximizing	the	free	
energy1:	

𝐹(𝜃) = D𝑞(𝜃) logE𝑝(𝑦|𝜃)
𝑝(𝜃)
𝑞(𝜃)F 𝑑𝜃	

(3.)

This is something that we describe in more detail in the original FMRIB VB tutorial
{Chappell:Ek0SFHKu}. Box 1 gives some added insight into how we might interpret the form
of this Free Energy expression.

One option to maximise F is to choose a parameterised form for the approximate posterior:
𝑞(𝜃; 𝜁), where 𝜁 is the set of hyper-parameters. We can then appeal to the Calculus of
Variations to arrive at an expression under which we can derive a series of ‘update
equations’ for the set of hyper-parameters of the approximate posterior. Since this involves
an integration, this method places a number of constrains on the choice of the approximate
posterior distribution. For example, the use of conjugate priors. This was the subject of the
original FMRIB Variational Bayes Tutorial {Chappell:Ek0SFHKu} and what is notable about
this approach, quite apart from the constraints, is the amount of ‘manual’ integration
required that is specific to the likelihood/posterior in question and thus needs to be
repeated if there are any changes to the model.

1 The free energy is a lower bound on the model evidence and thus is alternatively called the ‘Evidence Lower
BOund’ or ELBO.

Note that we cannot easily get around this problem. If instead we were to
try to take confidence intervals of the distribution rather than calculate the
variance, we would need to correctly scale the posterior distribution. This
would itself involve an integration. The problem is exactly the same if we go
back to the version of Bayes’ theorem in Equation (1.). This requires us to
calculate the evidence term (a useful term in its own right), but to do so
requires integration. The best we can do with the posterior only up-to-scale
is to find the maximum, i.e., the mode of the distribution – so-called
Maximum A Posteriori inference – and use a measure of the local curvature
of the distribution to say something about uncertainty (in essence this is the
Laplace Approximation).

Stochastic Variational Bayes
An alternative to the analytical approach considered above would be to attempt a ‘brute
force’ approach and attempt to maximise F directly using Gradient Descent, this will require
us to be able to compute the gradients of F with respect to the hyper-parameters, 𝜁, of the
approximating posterior:

∇K𝐹(𝜃) = ∇K ED𝑞(𝜃) logE𝑝(𝑦|𝜃)
𝑝(𝜃)
𝑞(𝜃)F 𝑑𝜃F

(4.)

The first problem with this approach is that to compute the free energy we need to
compute an integral and chances are that for the problem we are interested in (i.e., the
particular likelihood, prior and posterior distribution combination) this will not be tractable.

We can potentially get around this issue by sampling, i.e., taking a Monte Carlo
approximation to the integral:

𝐹 ≈
1
𝐿NlogO𝑝(𝑦|𝜃∗Q)R − logE

𝑞(𝜃∗Q)
𝑝(𝜃∗Q)F

T

(5.)

Where 𝜃∗Q are drawn from 𝑞(𝜃). Thus, we can write the gradient as:

∇K𝐹 ≈
1
𝐿N∇K ElogO𝑝(𝑦|𝜃∗Q)R − logE

𝑞(𝜃∗Q)
𝑝(𝜃∗Q)FF	

T

(6.)

Box 2 provides some further insight into why this formulation, using sampling, does provide
the approximation we need.

Box 1: Interpreting the form of the free energy equation
We can recognise the form of F as being an expectation over 𝑞(𝜃):

𝐹 = 𝐸V(W) Xlog E𝑝(𝑦|𝜃)
𝑝(𝜃)
𝑞(𝜃)F

Y

We can split the terms and write the free energy as:

𝐹 = 𝐸V(W)[log𝑝(𝑦|𝜃)] − 𝐸V(W) Xlog E
𝑞(𝜃)
𝑝(𝜃)F

Y

This illustrates that the process of maximizing the free energy is a combination of
maximizing the log-likelihood and minimizing the KL divergence between the
(approximate) posterior and the prior. The first term encourages parameter values that
explain the observed data, the second term favours posterior distributions that are
close to the prior.

We might equivalently write F in terms of the joint probability as:

𝐹 = D𝑞(𝜃) logE
𝑝(𝑦, 𝜃)
𝑞(𝜃) F 𝑑𝜃	

= 𝐸V(W)[log𝑝(𝑦, 𝜃)] − 𝐸V(W)[log(𝑞(𝜃))]
Under this formulation the first term represents and energy and encourages 𝑞(𝜃) to
focus probability mass where the model puts high probability, 𝑝(𝑦, 𝜃). The second term
(including the minus sign) is the entropy of 𝑞(𝜃) and encourages 𝑞(𝜃) to spread
probability mass to avoid concentrating it in one location.

This step alone means we have gone from doing Gradient Descent to now using Stochastic
Gradient Descent, since we are reliant on samples and hence we will not get an identical
result for the approximate gradient of F every time we calculate it. This leaves us with a
couple of issues that we will need to consider in practice: how large should L be, i.e., how
many samples is sufficient; and, related to this issue, how well will our Stochastic Gradient
Descent converge? The latter will be an important question since any Gradient Descent
scheme is iterative and relies on taking a step in parameter space along the direction
indicated by the gradient, but in our implementation at each step we are computing a
stochastic approximation to that gradient. At the very least, even if we start from the same
initial point every time, we are unlikely to take the same path through parameter space to
the maximum value as we would under a traditional Gradient Descent.

One issue that remains for us is to find an efficient way to compute the gradients required.
If we were to attempt to generate an analytic expression for the gradient we would find
ourselves using the chain rule to handle the various operations involved. Helpfully, the idea
of assembling the gradient of a complex function via a series of individual differentiations of
sub-functions via the chain rule can be generalised in the form of Automatic Differentiation.
Broadly, AD is a process in which each operation in the complex function is associated with
its differential. When a calculation is performed, by performing all of the relevant
operations, the differential is also computed by combing the differentials of the functions
via the chain rule. Conveniently, such methodology is now widely implemented in machine
learning in the form of ‘back-propagation’, where it is used to compute the gradient of an
objective function that itself is composed of a network of nodes2. To exploit back-
propagation in this context all we need to see is that our objective function can be written in
terms of a network (see Box 3). The result of all of this is that we can compute the gradient
‘on-the-fly’. As long as we can write our objective function in terms of sub-functions and
operations that are amenable to AD/back-propagation (and even more ideally, in terms of
functions that are present within our chosen computational library), we never need to
manually do any differentiation, but simply write down the objective function itself and
then request the relevant gradients to be computed.

2 For completeness, formally ‘back-propagation’ is AD in reverse accumulation mode.

Box 2: Monte Carlo approximation to an expectation
To use the approximations in equations (5.) and (6.) we draw L samples from the

approximate posterior evaluate the expression log	(𝑝(𝑦|𝜃∗Q) − log\V]W
∗^_

`]W∗^_
a for each

one and then take the average. Note that this is not a classic numerical approximation
to the the integral (which would itself be a challenge as the limits run from minus to
plus infinity); but, exploits the fact that this expression is an expectation (see Box [X]),
and that we can numerically approximate an expectation over a distribution by
sampling from the distribution and computing the expression we want the expectation
of and summing. This is an example of ‘importance sample’ for Monte Carlo integration.

We now have the makings of a general, plausible and potentially efficient scheme for
variational inference. However, we are still reliant on a stochastic process and thus ‘noisy’
gradient estimates that could lead to poor or even failed convergence. Clearly one way to
reduce the variability would be to choose L to be large. However, this would require a large
number of computations at each gradient descent step. Thus, we should make some other
attempts at reducing the variability in the gradients we calculate. One thing we can use is
the ‘reparameterization trick’ {Kingma:2013tz}, the resulting gradient estimates being called
by some ‘reparameterization gradients’.
The reparameterization trick is something we use to randomly draw 𝜃∗Q. It allows us to
deterministically generate a sample 𝜃∗Q from an independent random parameter 𝜖. This
means that the stochastic process, i.e., draws from 𝜖, do not depend upon the hyper-
parameters that need to be estimated. This has the effect of the reducing the variability in
the estimated gradients when we calculate them using, for example, back-propagation (see
Box 4).

Box 3: AD, back-propagation and functions as networks
Many machine learning algorithms are based on artificial neuronal networks (ANNs)
that are in effect just graphs into which input values are fed and combined using simple
mathematical operations (often as simple as summation) at nodes, with values being
passed from one node to the next (e.g., from one ‘layer’ to the next) via the graph
edges. This captured is captured in popular machine learning libraries, such as Tensor
Flow, that allow efficient calculation to be performed across large scale graphs. This
graph-based representation extends to more than just ANNs and even simple
mathematical functions can be considered as a graph, as in the Figure below.

With thanks to Oiwi for this example

If we supply a value for w, this graph will calculate L according the formula. For the
purposes of this tutorial the inputs to our function/graph are the data values that once
they have passed through the graph produce a calculation of the likelihood.
By breaking down the function into its ‘component’ parts we can then exploit AD or
backpropagation to calculate the gradient of the function. In essence the gradient
calculation involves making a backward pass through the network combining (via the
chain rule) the individual differentials of each of the component sub functions
represented by each node.

For example, if we were to choose as our approximate posterior a normal distribution with
hyper-parameters as the mean, m, and the standard deviation, s:
 𝑞(𝜃)~𝑁(𝜃;𝑚, 𝑠g) (7.)

Box 4: Why does reparametization reduce variance in gradient estimates?

The fundamental problem with our strategy is that we compute the gradient with respect to 𝜁
based on L samples drawn from the approximate posterior distribution. For this approximation
to hold we need a selection of samples that together provide a good approximation. However,
the distribution from which we are drawing our samples is itself dependent upon our current
estimate of 𝜁, say from 𝑞h(𝜃). If that estimate is poor, e.g., a bad choice of initial value, the
majority of our samples might come from values of 𝜃 that even taken together do not produce
a truly representative approximation for the gradient, because the ‘true’ distribution for 𝑞(𝜃)
actually has most of its probability mass elsewhere in 𝜃 space. To get a good estimate of the
gradient we would be highly reliant on the rare samples from the tails of the ‘poor’ distribution
𝑞Kh(𝜃) that happen to overlap with the middle of the true distribution. Strictly, our
approximation in equations (5.) and (6.) are only an unbiased estimate if we draw 𝜃 from the
true 𝑞(𝜃), but we cannot do that because this is precisely the distirbution we are trying to find.
If we start with a bad approximation there is no guarantee that we will get it right in the end
(expect in the limit that L tends to infinity).

The reparametrisation trick seeks to address this problem. We rewrite 	𝜃 as a function of a
random variable 𝜖 with a distribution, p, that does not depend on 𝜁. Now we can rewrite the
expectation (see Box 1) as one over p rather than 𝑞(𝜃). The trick works well when we can
choose p such that getting a good estimate does not depend on drawing rare values of 𝜖. This is
facilitated (but not guaranteed) by the fact that p does not depend on 𝜁 and that we can choose
p to be a simple unimodal distribution. But, there are other cases where it also may work well
including where there might be values of 𝜖 that are ‘important’ for a good gradient estimate,
but these values are not seen in our generative model, thus they are not ‘important’ in practice
and thus not important in the optimization process.

A fairly general way to find a suitable reparameterization is to exploit the probability integral
transform, which tells us that samples a random variable from any arbitrary probability density
function will be unfirmly distributed under transformation to the cumulative density function
(CDF). Thus, we can get a sampled value for 𝜃 from a sampled value 𝜖 via a transformation of
the form

𝜃∗ = 𝐹Vijk𝐹 (𝜖)l

Where 𝐹 (𝜖) is the CDF for the distribution p, and 𝐹V(𝜃) for q. This transformation relies on
being able to form the inverse of the CDF for q, which conveniently can be done analytically for
a normal (and multivariate) normal distribution. It is quite common to choose p to be the
standard normal, i.e., 𝜖~𝑁(0,1), since we can conveniently sample from this distribution.

Some (if not many) people appear to argue that the reparametrization trick is necessary to be
able to do back-propagation across the network that forms our objective function when, as in
this case, the function includes a stochastic node that itself depends upon deterministic nodes.
In this case the stochastic node being the approximate posterior from which we are drawing
samples that in turn depends upon hyper-parameters that we want to calculate the gradient
with respect to. Thus, we need back-propagation to traverse the stochastic node. The
reparamertization trick ‘moves’ the stochastic part of the process into a separate node, so that
the mode representing the approximate posterior is now deterministic and thus the back-
propagation can traverse it. However, whilst the reparametrization trick does indeed alter the
network in this way, it doesn’t appear that this is necessary to allow back-propagation, merely
that it results in less variable gradient estimates.

Then the reparameterization trick allows us to generate a sample 𝜃∗Q from this distribution
using:
 𝜃∗Q = 𝑚 + 𝑠𝜖 (8.)

With 𝜖~𝑁(0,1). In principle this ‘trick’ can be applied to other distributions as long as it is
possible to separate the stochastic component from the distribution hyper-parameters. For
example, Box 5 extends this to the Multi-Variate Normal distribution, other distributions are
also possible see {Ruiz:2016wq}.

We are left with a choice for L, the number of sample we will use to calculate our estimated
gradient. We expect larger L to give a more accurate estimate, but smaller L will result in
faster computation. In practice, using a simple sample to estimate the free energy gradient
(i.e. L = 1) may be sufficient; at least in part because we do our optimization over a series of
iterations (aka training epochs in Machine Learning parlance), so we can potentially cope
with imperfect gradient estimations, i.e. the stochastic nature of using low L, over the
course of the convergence process. We can assist this process by choosing a variant on
Gradient Descent that is particularly designed for stochastic optimization such as the Adam
algorithm {Kingma:2013tz}.

A further thing we can do to potentially improve computational efficiency, but also to
circumvent issues with small L, is to use ‘mini-batches’. This involves dividing the data into
subsets and performing a step of the optimization on each batch in turn. Under this method
we pass through the data taking multiple steps, then take another pass through the data on
a subsequent epoch, again processing one batch at a time. This is a very common approach
in Machine Learning problems where the data is ‘large’ and thus the computation of the
cost function (and therefore the gradients too) will be computationally expensive. It can be
favourable to only consider a subset at a time, even if this results in more iterative steps

Box 5: Approximating the posterior using a multivariate Normal distribution
A more useful case than using a univariate normal distribution as the approximate
posterior using a multi-variate Normal distribution for approximation to a multi-
parameter posterior:

𝑞(𝜽)~𝑀𝑉𝑁(𝒎, 𝑪)
Where for a P parameter inference, m is a (P x 1) matrix of parameter means, and C is a
(P x P) matrix of the parameter’s covariance. Since the covariance matrix should be
positive definite we can reparameterise it in terms of a Cholesky decomposition:

𝑪 = 𝑺𝑺t
With S a (P x P) lower triangular matrix with positive diagonal entries. In order to ensure
the diagonal entries are positive, we parameterise those in log-space:

𝑺(𝑖, 𝑖) = 𝑒wx
𝑺(𝑖, 𝑗) = 𝑢{|	for	𝑖 > 𝑗

In summary, the overall set of hyper-parameters, 𝜁, that we have to describe the
approximate posterior distribution are:

𝑚{	for	𝑖 = {1…𝑃}
𝑣{	for	𝑖 = {1…𝑃}

𝑢{|	for	𝑖 > 𝑗	𝑎𝑛𝑑	𝑖, 𝑗 = {1…𝑃}
For the MVN we can implement the reparameterisation trick by drawing samples of 𝜃
from

𝜽∗Q = 𝒎+ 𝑺𝝐
Where 𝝐~𝑀𝑉𝑁(𝟎, 𝑰).

toward convergence. But, it may well be that only using subsets of the data is good enough
to achieve convergence in a reasonable number of iterations but will lower computational
cost overall.

One of the powerful aspects of sVB is that it naturally exploits a graph-based representation
of functions, and thus is amenable to backpropagation, making it compatible with popular
and increasingly efficient ML libraries. In fact, the sVB method outlined here is in effect the
same as the Variational Auto Encoder, now widely used in ML, see Box 6.

Box 6: Why is sVB like the Variational Auto Encoder
The main place you might otherwise meet the sVB method considered in this tutorial is
in the realm of machine learning, where the same concepts are applied to create what
is called the Variational Auto Encoder that is popular for image processing applications.
An Auto Encoder is the combination of an Encoder and a Decoder: the Encoder takes
data (e.g. an image) as its input and passes it through a network/graph to produce a
reduced representation (for images the network would typically involve many layers of
convolution and pooling), the Decoder reverses that process and given the
representation produces a complete set of predicted data via another (decoding)
network. Under ideal conditions the Autoencoder when provided with data should
produce at its output an identical set of values that match the data, and the training of
the variables in the network can proceed on the basis of minimising a loss function
defined on the difference between true and predicted data.
The Variational Auto Encoder adds a constraint on the encoding network that forces it
to generate representations that follow a probability distribution (the original version
made this a Gaussian distribution). This allows it to generalise from simply memorising
the inputs it has been shown during the optimization (training) stage, to being able to
generate new predictions having ‘learned’ something about the data it has been
provided.
This is analogous to the sVB method where our approximate posterior distribution is
performing the function of the constrained representation, our model is the encoder
and the Free Energy is the loss function that we evaluate in the optimization of the
parameters of our representation. By drawing from the posterior, as we do to calculate
the loss function, we in effect do decoding to produce a prediction. Typically, the VAE,
which is composed of two ANNs, has many variables associated with edges in the
encoding and decoding graphs that need to be optimised. For the sVB formulation, the
equivalent’ networks are fixed, apart from a small number of hyper-parameters that we
estimate.

Example 1 – fitting a Gaussian distribution
First, we consider the simple (and classic) case of inferring on a single univariate Gaussian
distribution from some data. We will attempt to infer the (approximate) joint full posterior
of both the mean and variance of the Gaussian from which are data is drawn.

Generative Model
Our measurements come from a Gaussian distribution with mean, 𝜇, and precision
(1/variance), 𝛽:

𝑃(𝑦�|𝜇, 𝛽) =
�𝛽
√2𝜋

𝑒i
�
g(��i�)

�

If we draw N samples that are identically independently distributed (i.i.d) we have:

𝑝(𝒚|𝜇, 𝛽) =�𝑝(𝑦�|𝜇, 𝛽) = \
𝛽
2𝜋a

�
g
𝑒i

�
g ∑ (��i�)��

���

�

��j

Priors
Unlike ‘traditional’ VB we are not restricted to conjugate priors. In this example, we
somewhat arbitrarily choose a MVN prior over the mean, 𝜇, and the log of the variance,
log Oj

�
R:

�
𝜇

−log	(𝛽)�~𝑀𝑉𝑁(𝒎h, 𝑪h)
where we will choose the prior to be fairly noninformative by selecting hyper-parameters:

𝒎h = �00� , 𝑪h = �100 0
0 100�

Approximate Posterior
Again, there is no restriction to conjugate distributions, thus we are also free to choose our
approximating posterior. A MVN will be convenient, partly because we know how to
interpret the hyper-parameters of an MVN, but also because we know the
reparameterization trick will be possible. As defined by our choice above, the parameters in
𝜃 are 𝜇 and log(1/𝛽), hence:

𝑞(𝜃) = 𝑞 O
𝜇

− log(𝛽)R~𝑀𝑉𝑁(𝒎,𝑪)
Where m is a (2x1) matrix of estimated means of the parameters of the Gaussian
distribution and C is a (2x2) matrix containing the estimated covariance matrix for the

Note, this case is exactly analogous to the familiar data analysis scenario of
having a number of noisy measurements of a single quantity and wanting
an estimate of both the mean and variance of the measurements, i.e., a
‘best estimate’ of the quantity being measured and also a measure of the
noise magnitude.

 ‘Traditional’ VB would call for a normal distribution for 𝜇, and a gamma
distribution for 𝛽 and thus require a ‘mean field’ approximation: a posterior
distribution made up of a product of two independent distributions.
Resulting in no possibility of inferring correlation between the parameters).

parameters of the Gaussian distribution, i.e. it tells us about the uncertainty with which we
can estimate both the mean and precision of the Gaussian distribution that is generating the
data.

Free energy
We now have all of the information we need to write down the terms in the Free energy in
equation (3.) and thus implement the approximation in (and in turn the gradient
calculations of) equation (5.). The log-likelihood is:

log]𝑝(𝑦|𝜽)_ =
𝑁
2 log

𝛽
2𝜋 −

𝛽
2N

(𝑦� − 𝜇)g
�

��j

	

And the log KL-divergence between (approximate) posterior and prior:

logE
𝑞(𝜽)
𝑝(𝜽)F = −

1
2 logE

|𝑪|
|𝑪h|

F −
1
2
(𝜽 −𝒎)t𝑪ij(𝜽 −𝒎) −

1
2	
(𝜽 −𝒎h)t𝑪hij(𝜽 −𝒎h)

By choosing a MVN for both the prior and the approximate posterior distributions we can
perform the required integral of this second part of equation (5.) (i.e., we can compute
analytically the expectation of the log KL-divergence with respect to the approximate
posterior, See Box 7):

𝐿𝑜𝑠𝑠T = Dq(𝛉)logE
𝑞(𝜽)
𝑝(𝜽)F𝑑𝜽

=
1
2 ¡Trace

(𝑪hij𝑪) − logE
|𝑪|
|𝑪h|

F − 𝑁 +	(𝒎−𝒎h)t𝑪hij(𝒎 −𝒎h)¤

This means we do not need a stochastic approximation to this part of the Free energy, i.e.
we can compute this expression in place of equation (5.):

𝐹 ≈ 𝐿𝑜𝑠𝑠T +
1
𝐿NlogO𝑝(𝑦|𝜃∗Q)R

T

Which we might hope will make our approximations more accurate and less variable.

Using mini-batches
We can setup the sVB inference so that it proceeds via mini-batches of the data in an
attempt to arrive at a faster solution. In doing this we have to take care, since now we will
pass only a subset of the data to the function that calculates the log-likelihood. If we do not
rescale the resulting value it will now be smaller in proportion to the other term in the Free
Energy arising from the KL-divergence that includes the prior, and thus the prior will have
greater weight in the final estimated posterior akin to only doing inference on a smaller data
set. Thus, if we have a batch size of M (where M < N) the log-likelihood is:

log]𝑝(𝑦|𝜽)_ =
𝑁
2 log

𝛽
2 − \

N
Ma

𝛽
2 N

(𝑦§ − 𝜇)g
¨

§�j

 Note that, this step is not a result of the trivial nature of the problem we
are considering in this example, as it doesn’t depend on the likelihood (and
thus generative model) at all. It arises from the choice of prior and
posterior distributions, which will thus generalise to other
implementations.

Methods
We implemented the posterior and associated reparameterisation trick using the approach
in Box 5. This means that we will have a total of 5 hyper-parameters: two for m representing
the two entries in m, and 3 for C arising from the decomposition meaning we only need two
diagonal values and one off-diagonal. We also a consider a variant of this with only two
parameters for C, i.e., non-zero only on the diagonal, thus not estimating any correlation
between the model parameters in the posterior.

The stochastic VB inference method was implemented in python using the Tensor Flow
library (v1.4), using the Adam optimizer {Kingma:2013tz}. Data were generated in the form
of 100 samples from the likelihood with (mean) 𝜇 = 1 and (variance) 1/𝛽 = 4. Optimization
was run for 400 epochs and two different strategies were considered: full data inference,
where on each epoch a single optimisation step is taken using the full data (i.e. 400
iterations are performed); mini-batches, the data is divided into 10 batches of 10 data
points and optimisation is performed on each sequentially, thus on each epoch was pass
through the data once by performing 10 optimization steps (4000 iterations in total).

Results
Figure 1 shows the results of from the inference on a set of sampled data (as shown in
Figure 1(a)) comparing the estimate posterior from 2D grid search (b, for this no prior was
defined so effectively this is just the likelihood), stochastic VB with (d) and without (c)
inference of the correlation of the two parameters in the posterior. All three methods
correctly identify that the mean the mean and variance of the data. Noticeably, the form of
the estimated posterior from the stochastic VB inference, which is a parameterised MVN
distribution, matches very closely the sampled distribution from the 2D grid search. Figure 2

Box 7: Finding the expectation of the log-KL divergence term in the Free energy

𝐿𝑜𝑠𝑠T = Dq(𝛉)logE
𝑞(𝜽)
𝑝(𝜽)F𝑑𝜽

= −
1
2
D¡logE

|𝑪|
|𝑪h|

F + (𝜽 −𝒎)t𝑪ij(𝜽 −𝒎)

−	(𝜽 −𝒎h)t𝑪hij(𝜽 −𝒎h)¤ 𝑞(𝜽)d𝜃

= −
1
2 ¡logE

|𝑪|
|𝑪h|

F + 𝑇𝑟𝑎𝑐𝑒(𝑪ij𝑪)

− D[(𝜽 −𝒎)t𝑪hij(𝜽 −𝒎) − (𝜽 −𝒎)t𝑪hij𝒎h −𝒎h
t𝑪hij(𝜽 −𝒎)

+ (𝒎−𝒎h)t𝑪hij(𝒎−𝒎h)]		𝑞(𝜽)d𝜽¤ =

= −
1
2 ¡logE

|𝑪|
|𝑪h|

F + 𝑁 − Trace(𝑪hij𝑪) −	(𝒎 −𝒎h)t𝑪hij(𝒎−𝒎h)¤

Where we have used the following general results:

D(𝒙 −𝒎)t𝑼ij(𝒙 −𝒎)	𝑀𝑉𝑁(𝒙;𝒎, 𝐕)d𝒙 = 𝑇𝑟𝑎𝑐𝑒(𝑽𝑼ij)

D(𝒙 −𝒎)𝑀𝑉𝑁(𝒙;𝒎,𝑽)d𝒙 = 𝒎−𝒎 = 0

shows the approximate Free Energy, the cost function, evaluated at each epoch. For both
sVB inferences convergence appears to be reached somewhere between epoch 50 and 100.
Note, though, that it is hard to judge convergence because the Free energy values are
themselves stochastic estimates based on only a single sample of 𝜃, hence they quite
variable. Further implications of this are that we cannot select the epoch with the lowest
Free energy, since that might not represent the best solution, but could simply be the result
of the sample evaluated in that epoch. Additionally, we might need to take care if we want
the value of free energy for any further calculations, for example in using it as an
approximation to the model evidence for model comparisons. In that scenario we should
calculate the free energy using a larger number of samples.

Figure 1: Results from Bayesian inference on data generated from a normal distribution. (a) true
distribution (red) and histogram of sampled data (blue), (b) posterior distribution on mean and variance
evaluated using 2D grid evaluation, (c &d) posterior distribution estimated using sVB without and with a
hyper-parameter to capture correlation between the two parameters.

Figure 2: (approximate) Free Energy calculated at each epoch for both variants on sVB inference.

Figure 3 shows the results when using mini-batches. The results are strikingly similar to the
case without mini-batches, with perhaps the only difference being in the case where a

correlation of the parameters was allowed for in the posterior. Figure [X] show sthe Free
Energy at each epoch. It appears that convergence in this case happens in far fewer epochs,
quite possibly within the first 10 epochs (subject to the caveats mentioned above). It is
worth remembering, however, that each epoch now involves 10 separate optimisation
steps. Thus the overall number of calls to the Free energy calculation (and gradient
calculation) may not be that different between the two cases. But, each call in this mini-
batch case does only involved one 10th of the data, so might be expected to be faster. Thus,
even in this trivial example the use of mini-batches appears to be advantageous. (But, trying
to measure this on such a small problem is probably futile).

Figure 3: Results from Bayesian inference on data generated from a normal distribution. (a) true
distribution (red) and histogram of sampled data (blue), (b) posterior distribution on mean and
variance evaluated using 2D grid evaluation, (c &d) posterior distribution estimated using sVB

employing mini-batches, without and with a hyper-parameter to capture correlation between the
two parameters.

Figure 4: (approximate) Free Energy calculated at each epoch for both variants on sVB
inference when employing mini-batches (note, each epoch involves 10 iterations of the

optimization algorithm).

Example 2 – Inferring a Folded Normal distribution
For the second example, we consider data generated from a Folded Normal distribution: a
distribution where only positive values are possible. One reason for choosing this example is
that for data drawn from this distribution we would expect correlation between the mean
and variance of the distribution in our posterior. The other reason is that we would not be
able to apply ‘traditional’ VB to this example because we would not be able to find a
distribution that gives conjugacy between likelihood and prior.

Generative model
We draw measurement from a Folded Normal distribution with mean, 𝜇, and precision, 𝛽:

𝑝(𝑦�|𝜇, 𝛽) =
�𝛽
√2𝜋

𝑒i
�
g(��i�)

�
+
�𝛽
√2𝜋

𝑒i
�
g(��²�)

�

For 𝑦� 	> 	0, and 0 otherwise. An alternative formulation is:

𝑝(𝑦�|𝜇, 𝛽) =
�2𝛽
√𝜋

𝑒i
�
g(��²�)

�³´µ¶	(����)

Prior and Posterior
For this example, we will use precisely the same prior and (approximate) posterior
distributions as we did in the first example. Noting that our choice of posterior might not be
the best we could use (there may be one that makes a better approximation), but that we
are free to choose what we like. Since it is only the likelihood that has changed, we can
reuse the result derived in the first example for the KL-divergence between posterior and
prior.

Results
Figure 5 shows a set of results from inference of data drawn from a folded normal
distribution. For this dataset the sVB method estimates a slightly higher mean and lower
variance than was used to generate the data (this is reasonably variable depending upon the
data used). The Inference with posterior correlation captures more of the correlation
between the mean and variance parameters, i.e., reflecting that there are multiple values of
mean and variance of the distribution that could plausibly explain the data. There is a
noticeable discrepancy between the sVB solution and the grid search in this case, which
might partially be explained by the lack of influence of a prior on the grid search solution

Figure 5: Results from Bayesian inference on data generated from a Folded Normal distribution.
(a) true distribution (red) and histogram of sampled data (blue), (b) posterior distribution on
mean and variance evaluated using 2D grid evaluation, (c &d) posterior distribution estimated
using sVB without and with a hyper-parameter to capture correlation between the two
parameters.

Figure 6 shows the results when using mini-batches. As before the sVB solution without
correlation estimation looks similar to the non-batched analysis, but there are some
differences when correlation is included in the inference, in this case it is doing a better job
of estimating the mean and variance of the data. Some very empirical exploration suggests
that the estimated posterior from the approximated posterior without correlation is stable
over different runs (with the same data), but more variability is observed between
independent runs when posterior correlation is included. This doesn’t appear to be
reflected in the values of Free Energy to which the method ‘converges’.
As in the first example, the apparent convergence of the Free Energy is more rapid with
epoch (not shown)

Figure 6: Results from Bayesian inference on data generated from a Folded Normal distribution. (a)
true distribution (red) and histogram of sampled data (blue), (b) posterior distribution on mean and

variance evaluated using 2D grid evaluation, (c &d) posterior distribution estimated using sVB
employing mini-batches, without and with a hyper-parameter to capture correlation between the

two parameters.

Conclusions
In this tutorial we have ‘updated’ our previous introduction to Variational Bayes to a more
recent and potentially more flexible approach based on stochastic approximations:
stochastic Variational Bayes (sVB). In doing so we can relax the restrictions of the mean-field
approximation and conjugacy, and exploit computational advances that are reaping rewards
for machine learning methods. We have illustrated the methodology on some simple, and
relatively familiar, cases to provide some insight as to how sVB might be deployed for
Bayesian Inference.

References

